Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Environ Res Public Health ; 19(1)2021 Dec 21.
Article in English | MEDLINE | ID: covidwho-1580858

ABSTRACT

Passive immunotherapy with convalescent COVID-19 plasma (CCP) is used as a therapeutic procedure in many countries, including Serbia. In this study, we analyzed the association between demographic factors, COVID-19 severity and the reactivity of anti-SARS-CoV-2 antibodies (Abs) in Serbian CCP donors. Individuals (n = 468) recovered from confirmed SARS-CoV-2 infection, and who were willing to donate their plasma for passive immunization of COVID-19 patients were enrolled in the study. Plasma samples were tested for the presence of IgG reactive to SARS-CoV-2 spike glycoprotein (S1) and nucleocapsid antigens. Individuals were characterized according to age, gender, comorbidities, COVID-19 severity, ABO blood type and RhD factor. Total of 420 candidates (420/468; 89.74%) reached the levels of anti-SARS-CoV-2 IgG that qualified them for inclusion in CCP donation program. Further statistical analysis showed that male individuals (p = 0.034), older age groups (p < 0.001), existence of hypertension (p = 0.008), and severe COVID-19 (p = 0.000) are linked with higher levels of anti-SARS-CoV-2 Abs. These findings will guide the selection of CCP donors in Serbia. Further studies need to be conducted to assess the neutralization potency and clinical efficiency of CCP collected from Serbian donors with high anti-SARS-CoV-2 IgG reactivity.


Subject(s)
COVID-19 , Aged , Antibodies, Viral , Blood Donors , COVID-19/therapy , Demography , Humans , Immunization, Passive , Male , SARS-CoV-2 , COVID-19 Serotherapy
2.
J Med Virol ; 93(4): 2065-2075, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217368

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Characterization of the immunological mechanisms involved in disease symptomatology and protective response is important to progress in disease control and prevention. Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galß1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response against pathogenic viruses and other microorganisms containing this modification on membrane proteins mediated by anti-α-Gal immunoglobulin M (IgM)/IgG antibodies produced in response to bacterial microbiota. In addition to anti-α-Gal antibody-mediated pathogen opsonization, this glycan induces various immune mechanisms that have shown protection in animal models against infectious diseases without inflammatory responses. In this study, we hypothesized that the immune response to α-Gal may contribute to the control of COVID-19. To address this hypothesis, we characterized the antibody response to α-Gal in patients at different stages of COVID-19 and in comparison with healthy control individuals. The results showed that while the inflammatory response and the anti-SARS-CoV-2 (Spike) IgG antibody titers increased, reduction in anti-α-Gal IgE, IgM, and IgG antibody titers and alteration of anti-α-Gal antibody isotype composition correlated with COVID-19 severity. The results suggested that the inhibition of the α-Gal-induced immune response may translate into more aggressive viremia and severe disease inflammatory symptoms. These results support the proposal of developing interventions such as probiotics based on commensal bacteria with α-Gal epitopes to modify the microbiota and increase α-Gal-induced protective immune response and reduce severity of COVID-19.


Subject(s)
Antibodies, Viral/analysis , COVID-19/immunology , Disaccharides/immunology , Immunity, Humoral , Aged , Aged, 80 and over , Antibodies, Bacterial/analysis , COVID-19/diagnosis , Epitopes/immunology , Female , Humans , Immunoglobulin G/analysis , Male , Microbiota/immunology , Middle Aged , Severity of Illness Index , Spain
4.
ACS Infect Dis ; 6(12): 3104-3108, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-972389

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which has affected millions of people worldwide. Considerably lower prevalence and fatality rates resulting from COVID-19 are reported in Africa and Asia than in the industrialized world. In this Viewpoint, we discuss the possibility that this intriguing phenomenon could be, among other factors, due to protective immunity of the oligosaccharide galactose-α-1,3-galactose (α-Gal). The α-Gal immunity induced by gut microbiota that express the same glycan modification may prevent COVID-19 through the activation of different mechanisms involved in SARS-CoV-2 neutralization and the downregulation of the inflammatory response in the lungs of infected patients.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Developing Countries , Immunity, Innate , Pandemics , SARS-CoV-2/immunology , Severity of Illness Index , Trisaccharides/immunology , ABO Blood-Group System/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/blood , COVID-19/virology , Cross Reactions , Gastrointestinal Microbiome/immunology , Humans , Mice , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL